

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Workshop on GLOBIO model, Rio de Janeiro, 2009

Land Use and Cover Change Modeling at Brazilian Amazon: How to Model Human Actions?

Tiago Garcia de Senna Carneiro Universidade Federal de Ouro Preto http://www.terralab.ufop.br

Gilberto Câmara Ana Paula Aguiar Earth System Science Centre, INPE http://geochange.ess.inpe.br

Human actions and global change

photo: C. Nobre

How much change is happening?Where are changes taking place?Who is being impacted by the change?

photo: A. Reenberg

National Plan for Climatic Change (Brazil, 2008)

TERCA-FEIRA, 2 DE DEZEMBRO DE 2008 ESTADO DE S.PAULO

NÚMEROS

Gráfico 4: Evolução das Taxas de Desmatamento na Amazônia

9,2 mil _{km} quadrados é o máximo que o País poderá desmatar no ano que vem para cumprir a primeira etapa da redução progressiva do desmatamento na Amazônia

é a área total de desmatamento da floresta amazônica que o governo vai tolerar entre 2009 e 2017, uma extensão de matas superior ao território dos Estados do Rio e de Sergipe, somados

5 mil km quadrados é a taxa de desmate anual esperada para 2017, caso o plano do governo seja bem-sucedido

Are targets of deforestation possible for the Brazilian Amazon?

Modelling Nature-Society Interactions

- How do humans use space?
- How to describe and predict changes resulting from human actions?
- What computational tools are needed to model Modeling the interaction nature-society interactions?

Question #1 for Nature-Society models

Loss of Biodiveristy

What ontological kinds (data types) are required for nature-society models?

Environmental Change models deals with ST fields

A field is a spacetime continuum

Field: $T \rightarrow S \rightarrow A$

Societal data are modelled as ST objects

land_cover cells in 1985

attr_id	object_id	initial_time	final_time	land_cover	dist_primary_road	dist_secondary_road
C34L181985-	C34L18	01/01/1985	31/12/1985	forest	7068.90	669.22
C34L181988-	C34L18	01/01/1988	31/12/1988	forest	7068.90	669.22
C34L181991-	C34L18	01/01/1991	31/12/1991	forest	7068.90	669.22
C34L181994-	C34L18	01/01/1994	31/12/1994	deforested	7068.90	669.22
C34L181997	C34L18	01/01/1997	31/12/1997	deforested	7068.90	669.22
C34L182000-	C34L18	01/01/2000	31/12/2000	deforested	7068.90	669.22
C34L191985	C34L19	01/01/1985	31/12/1985	forest	7087.29	269.24
C34L191988-	C34L19	01/01/1988	31/12/1988	deforested	7087.29	269.24
C34L191991-	C34L19	01/01/1991	31/12/1991	deforested	7087.29	269.24
C34L191904	C34I 19	01/01/1994	31/12/1994	deforested	7087 29	269 24
004140400						

 $\frac{C34L19192}{C34L19200}$ An object is an individual that exists in space and time (Object: ID \rightarrow T \rightarrow [S,A])

Requirement #1 for Nature-Society models

land_cover cells (objects)

Loss of Biodiversity (fields)

attr_id	object_id	initial_time	final_time	land_cover	dist_primary_road	dist_secondary_road
C34L181985	C34L18	01/01/1985	31/12/1985	forest	7068.90	669.22
C34L181988	C34L18	01/01/1988	31/12/1988	forest	7068.90	669.22
C34L181991	C34L18	01/01/1991	31/12/1991	forest	7068.90	669.22
C34L181994	C34L18	01/01/1994	31/12/1994	deforested	7068.90	669.22
C34L181997	C34L18	01/01/1997	31/12/1997	deforested	7068.90	669.22
C34L182000	C34L18	01/01/2000	31/12/2000	deforested	7068.90	669.22
C34L191985	C34L19	01/01/1985	31/12/1985	forest	7087.29	269.24
C34L191988	C34L19	01/01/1988	31/12/1988	deforested	7087.29	269.24
C34L191991	C34L19	01/01/1991	31/12/1991	deforested	7087.29	269.24
C34L191994	C34L19	01/01/1994	31/12/1994	deforested	7087.29	269.24

Nature-society models need to describe fields and objects (and store their attributes in a database)

Question #2 for Nature-Society models

What models are needed to describe human actions?

Modelling Human Actions

- Models based on global factors
 - Explanation based on causal models
 - "For everything, there is a cause"
 - Human_actions = f (factors,....)

Emergent models

- Local actions lead to global patterns
- Simple interactions between individuals lead to complex behaviour
- "More is different"
- "The organism is intelligent, its parts are simple-minded"
- Example: cellular automata based models, agent based models

Statistics: Humans as clouds

 $y=a_0 + a_1x_1 + a_2x_2 + \dots + a_ix_i + E$

- Establishes statistical relationship with variables that are related to the phenomena under study
- Basic hypothesis: stationary processes
- Examples: CLUE Model (University of Wageningen)

CLUE modeling framework

Land Change in Amazonia (Scenario for 2015)

TerraME cell space: 90 initial explanatory factors

[Aguiar, 2006]

Statistics: Humans as clouds

MODEL 7:	$R^2 = .86$		
Variables	Description	stb	p-level
	Percentage of large farms, in terms of		
PORC3_AR	area	0,27	0,00
LOG_DENS	Population density (log 10)	0,38	0,00
PRECIPIT	Avarege precipitation	-0,32	0,00
	Percentage of small farms, in terms of		
LOG_NR1	number (log 10)	0,29	0,00
DIST_EST	Distance to roads	-0,10	0,00
LOG2_FER	Percentage of medium fertility soil (log 10)	-0,06	0,01
PORC1_UC	Percantage of Indigenous land	-0,06	0,01

Statistical analysis of deforestation: 27 alternative regressive models (R² = 0.80 to 0.86)

[Aguiar et al, 2007]

Demand scenarios

[Aguiar et al, 2007]

Law enforcement scenarios

	Forest cover threshold (forest_ threshold)	Maximum allowed change (change_max_lim)
No law enforcement	20%	50%
Private Reserve partial		
enforcement	50%	50%
Local Command and Contro	l:	
Controlled ar	eas 50%	20%
Outside controlled ar	eas 20%	50%

CLUE Simulations: protected areas impact

Study area – ALAP BR 319

BASE Scenario – Protected areas in 2004

- ALAP BR 319
- Paved roads in 2010
- Not paved roads
- Main Rivers
- **Orts**

Protected areas in 2004 New productive areas (2007) New sustenable use areas (2007)

BASE SCENARIO – Hot spots of change (1997 to 2020)

CENÁRIO SIMULADO – Adicionando áreas de proteção integral e uso sustentável (2007)

- ALAP BR 319
- Paved roads in 2010
- Not paved roads
- Main Rivers
- ♦ Ports

Protected areas in 2004 New productive areas (2007) New sustenable use areas (2007)

Simulated Scenario – Differences from the BASE SCENARIO

Dynamic modeling conclusions

- □ Most important coefficient: diffusive pattern of deforestation
- Results show that single factor analysis can be misleading: relative importance of determining factors vary across the Amazonia
- □ The main factors identified were:
 - Population density;
 - Connection to national markets;
 - Climatic conditions;
 - Indicators related to land distribution between large and small farmers.
- It is the interaction of connectivity and other factors that influence the intra-regional dynamics and created differentiated conditions in the new expansion axes.
- □ This intra-regional differences led to differentiated impacts of policies across the region.

Agents as basis for complex systems

Human behavior:

- Autonomous and collaborative
- Goal oriented
- Based on previous knowledge
- Planned

source: Nigel Gilbert

Agents: autonomy, flexibility, interaction

No central authority: Each bird reacts to its neighbor

Bottom-up: not possible to model the flock in a global manner. It is necessary to simulate the **INTERACTION** between the individuals

Requirement #2 for Nature-Society models

Models need to support both statistical relations (clouds) and agents (ants)

Question #3 for Nature-Society models

What types of spatial relations exist in nature-society models?

Natural space is (usually) isotropic Societal space is mostly anisotropic

Societal spaces are anisotropic

Which spatial objects are closer?

[Aguiar et al., 2003]

Requirement #3 for Nature-Society models: express anisotropy explicitly

Question #4 for Nature-Society models

How do we combine independent multi-scale models with feedback?

Athmosphere, ocean, chemistry climate model (resolution 200 x 200 km)

Atmosphere only global climate model (resolution 50 x 50 km)

Regional climate model (resolution 10 x 10 km)

Hydrology, Vegetation Soil Topography (e.g, 1 x 1 km)

Regional land use change Socio-economic changes Adaptation (e.g., 100 x 100 m)

Multi-scale modelling includes networks

Flow of timber from Amazonia

Network-based relations

National market chains in Brazil

[Moreira et al., 2008]

Requirement #4 for Nature-Society models: support multi-scale modelling using explicit relationships

Question #5 for Nature-Society models

photos: Isabel Escada

How can we express behavioral changes in human societies?

Small Farmers

When a small farmer becomes a medium-sized one, his behaviour changes

Medium-Sized Farmers

Societal systems undergo phase transitions

Isabel Escada, 2003

Requirement #5 for Nature-Society models: Capture phase transitions

TerraME: Computational environment for developing nature-society models

Cell Spaces

All these requirements have been addressed in TerraME design. [Carneiro, 2006]

TerraME modelling environment

[Carneiro, 2006]

TerraME's way: Modular components

[Carneiro, 2006]

Mens. 1

Mens. 3

Mens. 2

Mens.4

1:32:00

1:32:10

1:38:07

1:42:00

1

2.

3.

4.

4. timeToHappen += period

Describe spatial structure

Describe temporal structure

Get first pair
Execute the ACTION

3. Timer = EVENT

return value

true

Describe rules of behaviour

Describe spatial relations

TerraME GIS Integration: Cell Spaces integrated with databases

			- CHid			
1.1						
	88 × 3 480 1			Star and F		
				- 11 A		
						Call of the second seco
				-	A THE ALL ALL A	
	A TOP A					T
1 A 4						
				66 A A		
				1 - A 100		Ъ
	luzesContagem	Suscetibilidade	TMAX	URMIN	P15	<u>F</u> _
- 1 (il	3	5MEDIA	20.8	49.5	5 28.43	_
1000		ZMEDIA	20.6	50.5	8 34.62	2
2	25	CALLET FRANK A	15 H A		40.81	1
2	25		24.2	53.2	d 10.01	-
2 3 4 5	25	9MEDIA 4MEDIA 2MEDIA	24.2	53.2	8 19.68 6 15.32	les lo
23456	25 21 3	9MEDIA 4MEDIA 2MEDIA 6ALTA	24.2 24.2 24.2 24.2 24.2	53.2 51.1 50.0	5 19.68 5 15.37 5 12.35	
2 3 4 5 6 7	25 21 3 2	9MEDIA 4MEDIA 2MEDIA 6ALTA 0ALTA	24.2 24.2 24.2 24.2 24.2 24.2 24.2	53.2 51.1 50.0 50.0 47.8	8 19.68 5 15.37 5 12.35 1 8.97	
2 3 4 5 6 7	25 21 3 2	9MEDIA 4MEDIA 2MEDIA 6ALTA 0ALTA	24.2 24.2 24.2 24.2 24.2 24.2	53.2 51 1 50.0 50.0 47.8	8 19.68 5 15.37 5 12.35 1 8.97	

TerraME GIMS – Graphical Interface for Modeling and Simulation

Model Package Explorer

TerraME Observer

TerraME HPA High Performance Architecture

Acknowledgments and thanks to:

Gilberto Câmara (INPE): Land use modeling group leader Ana Aguiar (INPE): Land use models in TerraME Miguel Monteiro (INPE): Agent models in TerraME

Sergio Costa, Pedro Andrade-Neto, Karine Ferreira, Gilberto Ribeiro, Eva Moreira, Giovana Espinola: PhD Students

TerraME TEAM

Tiago Carneiro (UFOP): TerraME architect and chief programmer Raian Maretto (UFOP): TerraME programmer Antônio Rodrigues (UFOP): TerraME programmer Thiago Lima (UFOP): TerraME programmer